Compressive spectral embedding: sidestepping the SVD

نویسندگان

  • Dinesh Ramasamy
  • Upamanyu Madhow
چکیده

Spectral embedding based on the Singular Value Decomposition (SVD) is a widely used “preprocessing” step in many learning tasks, typically leading to dimensionality reduction by projecting onto a number of dominant singular vectors and rescaling the coordinate axes (by a predefined function of the singular value). However, the number of such vectors required to capture problem structure grows with problem size, and even partial SVD computation becomes a bottleneck. In this paper, we propose a low-complexity compressive spectral embedding algorithm, which employs random projections and finite order polynomial expansions to compute approximations to SVD-based embedding. For anm×nmatrix with T non-zeros, its time complexity is O ((T +m+ n) log(m+ n)), and the embedding dimension is O(log(m + n)), both of which are independent of the number of singular vectors whose effect we wish to capture. To the best of our knowledge, this is the first work to circumvent this dependence on the number of singular vectors for general SVD-based embeddings. The key to sidestepping the SVD is the observation that, for downstream inference tasks such as clustering and classification, we are only interested in using the resulting embedding to evaluate pairwise similarity metrics derived from the l2-norm, rather than capturing the effect of the underlying matrix on arbitrary vectors as a partial SVD tries to do. Our numerical results on network datasets demonstrate the efficacy of the proposed method, and motivate further exploration of its application to large-scale inference tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive hyperspectral imaging via adaptive sampling and dictionary learning

In this paper, we propose a new sampling strategy for hyperspectral signals that is based on dictionary learning and singular value decomposition (SVD). Specifically, we first learn a sparsifying dictionary from training spectral data using dictionary learning. We then perform an SVD on the dictionary and use the first few left singular vectors as the rows of the measurement matrix to obtain th...

متن کامل

Multibiometric Template Security Using CS Theory – SVD Based Fragile Watermarking Technique

Protection of biometric template against spoofing or modification attack at system database is major issue in multibiometric system. Hence fragile digital watermarking technique is one of the solutions for biometric template protection against these attacks. In this paper, fingerprint watermarking technique based on SVD and Compressive Sensing theory proposed for protection of biometric templat...

متن کامل

Ensuring Security to the Compressed Sensing Data Using a Steganographic Approach

ISSN 2277 – 503X | © 2013 Bonfring Abstract--This paper focuses on the strength of combining cryptography and steganography methods to enhance the security of communication over an open channel. Here the data to be send are secured by using the compressive sensing method and the Singular Value Decomposition (SVD) based embedding method. The data is encrypted using the compressive measurements o...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Research on Color Watermarking Algorithm Based on RDWT-SVD

In this paper, a color image watermarking algorithm based on Redundant Discrete Wavelet Transform (RDWT) and Singular Value Decomposition (SVD) is proposed. The new algorithm selects blue component of a color image to carry the watermark information since the Human Visual System (HVS) is least sensitive to it. To increase the robustness especially towards affine attacks, RDWT is adopted for its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015